

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

BREVET DE TECHNICIEN SUPÉRIEUR

Assistance Technique d'Ingénieur ÉPREUVE E3

Mathématiques et sciences physiques

UNITÉ U32

SCIENCES PHYSIQUES

À l'exclusion de tout autre matériel, l'usage de la calculatrice est autorisé conformément à la circulaire n° 99-186 du 16 novembre 1999.

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies.

Documents à rendre avec la copie :

- DOCUMENT RÉPONSE N°1 page 10/13
- DOCUMENT RÉPONSE N°2 page 11/13
- DOCUMENT RÉPONSE N°3 page 12/13
- DOCUMENT RÉPONSE N°4 page 13/13

Dès que le sujet vous est remis, assurez-vous qu'il soit complet et comporte 13 pages numérotées de 1/13 à 13/13.

BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 1 sur 13

Étude d'un scooter électrique

Introduction : Scoot'élec a une vitesse nominale de 45,0 km.h⁻¹ et une autonomie de 45,0 km en charge normale selon le constructeur.

L'objectif du sujet est d'étudier partiellement le fonctionnement du scooter.

Le sujet comporte quatre parties indépendantes.

- Partie A: moteur à courant continu et hacheur série (10 points).
- Partie B : commande du hacheur (5 points).
- Partie C : charge de la batterie (3 points).
- Partie D : autonomie du scooter (2 points).

BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 2 sur 13

• Partie A : moteur à courant continu et hacheur série (10 points).

Cahier des charges : le moteur doit être capable de fournir une puissance minimale de 1,00 kW à 4300 tr.min⁻¹ pour maintenir une vitesse stabilisée de 45,0 km.h⁻¹ sur le plat en charge normale.

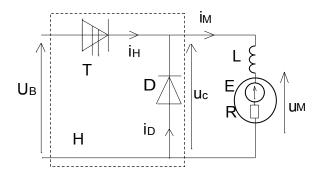
Les relevés de performances de l'ensemble moteur-variateur sont donnés en ANNEXE.

A.1 Moteur à courant continu.

Résistance de l'induit R = 5,20 m Ω . Résistance de l'inducteur (ou de l'excitation) : R_{ex} = 0,640 Ω .

- A.1.1 Étude du fonctionnement avec le courant induit $I_M = 120 \text{ A}$.
 - A.1.1.1 Calculer les pertes par effet Joule dans l'induit. Vérifier que les pertes dans l'inducteur valent 44,0 W.
 - A.1.1.2 Calculer la puissance absorbée totale et en déduire les pertes autres que par effet Joule. À quoi correspondent ces pertes ?
 - A.1.1.3 Donner le schéma équivalent de l'induit du moteur en orientant les grandeurs électriques. En déduire la relation entre U_M (tension aux bornes de l'induit), R, E et I_M . Calculer la fém E.
 - A.1.1.4 Calculer le moment du couple électromagnétique Te. À quoi correspond la différence entre Tu (moment du couple utile) et Te ?
- A.1.2 Étude des performances de l'ensemble moteur-variateur.
 - A.1.2.1 Montrer que les caractéristiques du moteur données dans l'ANNEXE permettent de répondre au cahier des charges.

Pour vérifier qu'on obtient bien les performances attendues, le service « contrôle qualité » a déterminé une enveloppe standard liant la puissance à la vitesse. Elle est représentée sur le DOCUMENT RÉPONSE N°1. En fonctionnement normal la caractéristique doit être située entre les deux courbes.

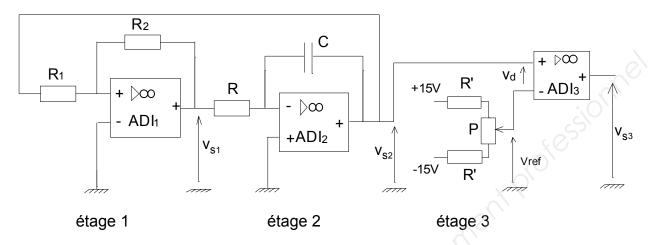

A.1.2.2 Tracer sur le DOCUMENT RÉPONSE N°1 la caractéristique Pu(n) pour tous les points de fonctionnement donnés dans l'ANNEXE et conclure.

BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 3 sur 13

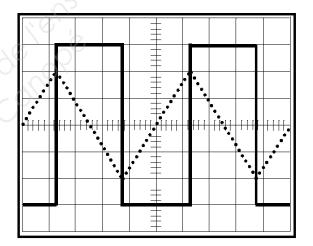
A.2 Hacheur série.

Pour faire varier la vitesse du scooter, on place un hacheur entre la batterie et l'induit du moteur. On admet que le courant d'excitation du moteur est constant dans cette partie. Une inductance, notée L, est placée en série avec le moteur. La diode D est supposée parfaite.

Le scooter est équipé de 3 batteries montées en série donnant une tension U_B = 20,0 V. Soit α le rapport cyclique du signal de commande.


Le courant i_M est pratiquement continu avec $i_M \approx \langle i_M \rangle = 120 \text{ A}$. $E = 4,00.10^{-3} \text{ x n avec}$ n exprimée en tr.min⁻¹.

- A.2.1 Compléter le DOCUMENT RÉPONSE N°2 en précisant les états du transistor et de l'interrupteur sur 2 périodes sachant que le transistor (T) du hacheur (H) est commandé périodiquement.
- A.2.2 Étude de la tension de sortie du hacheur.
 - A.2.2.1 Représenter sur LE DOCUMENT RÉPONSE N°2 la tension $u_c(t)$ pour le α représenté. Déterminer la valeur de α .
 - A.2.2.2 Montrer que la valeur moyenne de $u_c(t)$ est $\langle u_c \rangle = \alpha.U_B$. Calculer $\langle u_c \rangle$.
- A.2.3 Justifier, par des considérations énergétiques, le rôle de L et D.
- A.2.4 Étude de la variation de vitesse.
 - A.2.4.1 Établir la relation entre $\langle u_c \rangle$, E, R et $\langle i_M \rangle$.
 - A.2.4.2 Montrer que n = $5000.\alpha 156$ (n en tr.min⁻¹).
 - A.2.4.3 Calculer la valeur de α pour que le scooter roule à 37,6 km.h⁻¹ sachant que n = 4300 tr.min⁻¹, v = 45,0 km.h⁻¹.
- A.2.5 Étude du freinage.
 - A.2.5.1 Montrer que le circuit proposé ne permet pas un freinage avec récupération d'énergie.
 - A.2.5.2 Citer le type de hacheur permettant de récupérer de l'énergie lors d'une descente.

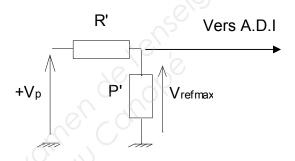

BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 4 sur 13

• Partie B : commande du hacheur (5 points).

Les amplificateurs différentiels intégrés (ADI) sont supposés parfaits et alimentés en $\pm 15,0$ V.

- B.1 Générateur triangulaire (étages 1 et 2) : on observe, sur la figure cidessous, les tensions v_{s1} (traits continus) et v_{s2} (traits pointillés) avec un calibre de 5,00 V/div sur les 2 voies et 20,0 μ s/div pour le balayage.
 - B.1.1 Déterminer les amplitudes des tensions v_{s1} et v_{s2} et leurs fréquences.
 - B.1.2 Justifier le fonctionnement de l'ADI₁ et donner un nom à cette structure pour l'étage 1.
 - B.1.3 Justifier le fonctionnement de l'ADI₂ et donner un nom à cette structure pour l'étage 2.

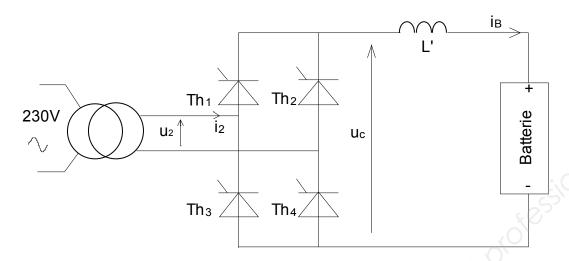
BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 5 sur 13


B.2 Étude de l'étage 3.

La tension v_{s2} est triangulaire et représentée sur le DOCUMENT RÉPONSE $N^{\circ}3$. La tension v_{ref} est continue et réglable.

- B.2.1 Donner le régime de fonctionnement de l' ADI_3 . Préciser les valeurs de la tension v_{s3} .
- B.2.2 Tracer, sur le DOCUMENT RÉPONSE N°3, v_{ref} = -5,00 V et en déduire $v_{s3}(t)$ (5,00 V/div). Déterminer le rapport cyclique α de v_{s3} .
- B.2.3 Si v_{ref} augmente comment varie α ?
- B.3 Choix de la résistance R'.

On veut pouvoir limiter la valeur de V_{ref} à V_{refmax} . Lorsque V_{ref} est maximale, le schéma électronique peut alors se ramener à la figure ci-dessous avec :


$$V_p = 15.0 \text{ V et P'} = \frac{P}{2} = 5.00 \text{ k}\Omega.$$

- B.3.1 Exprimer V_{refmax} en fonction de V_p , R' et P'. Calculer R' si V_{refmax} = 10,0 V.
- B.3.2 Calculer la valeur de la tension aux bornes de R' et la puissance dissipée dans R'. Peut-on utiliser une résistance au ¼ W ?

BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 6 sur 13

• Partie C : charge de la batterie (3 points).

- * Le chargeur embarqué est constitué d'un transformateur et d'un pont tout thyristors.
- * Le transformateur est considéré comme parfait. Il est alimenté par le réseau 230 V, 50 Hz et fournit une tension sinusoïdale de valeur efficace U₂ = 30,0 V alimentant le pont. Sa puissance apparente vaut 1,50 kVA.
- * On considèrera que les 4 thyristors sont parfaits. On note θ_0 l'angle de retard à l'amorçage des thyristors. Les thyristors Th₁ et Th₄ conduisent simultanément de θ_0 à θ_0 + π , Th₂ et Th₃ conduisent de θ_0 + π à θ_0 + 2 π .
- * Le courant i_B(t) en sortie du pont est supposé continu grâce à la bobine L'. Il est mesuré avec une sonde magnétique à effet hall (convertisseur courant-tension)
- * L'expression de la valeur moyenne de la tension en sortie du pont est alors :

$$U_{C_{MOY}} = \langle u_c \rangle = \frac{2\hat{U}_2}{\pi} \cos \theta_0$$
 où \hat{U}_2 est la valeur maximale de la tension u_2 .

- C.1 Indiquer le rôle du transformateur. Calculer l'intensité nominale du courant secondaire l₂.
- C.2 Pour $\theta_0 = 30.0^{\circ}$ et $I_B = 50.0$ A:
 - C.2.1 Indiquer la conversion réalisée par le pont.
 - C.2.2 Représenter les zones de conduction des thyristors sous la représentation de la tension u_c(t) (DOCUMENT RÉPONSE N°4).
 - C.2.3 Déterminer les valeurs maximales l_{2M} et efficace l₂ du courant i₂(t) délivré par le transformateur (DOCUMENT RÉPONSE N°4). Vous préciserez le type d'appareil utilisé pour mesurer cette valeur efficace et le réglage effectué ?
 - C.2.4 Calculer <uc>.

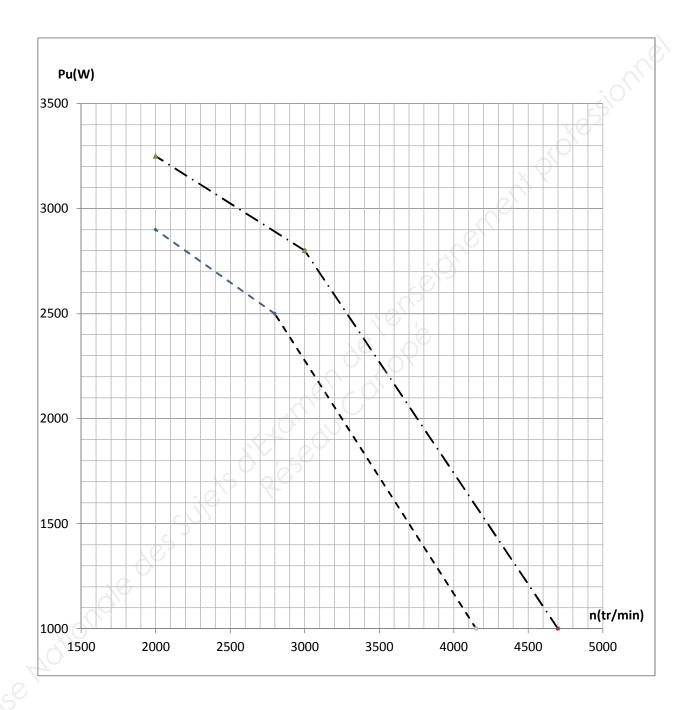
BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 7 sur 13

- Partie D : autonomie du scooter (2 points).
 - D.1 La charge des batteries est telle que le courant est de 50,0 A durant 2 heures puis de 5,00 A durant 3 heures. Calculer la capacité des batteries exprimée en A.h.

On admettra que la batterie conserve des caractéristiques énergétiques lui permettant d'assurer un fonctionnement normal tel que $I_B = 90,0$ A, n = 4300 tr.min⁻¹ et v = 45,0 km.h⁻¹ jusqu'à 80,0 % de décharge.

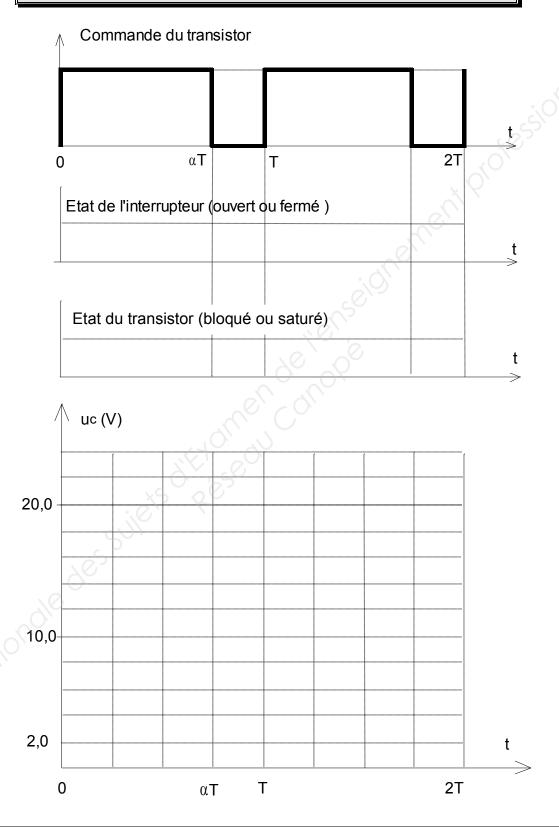
- D.2 Déterminer l'autonomie du scooter en temps et en kilométrage.
- D.3 Comparer le résultat aux performances annoncées par le constructeur.

BOSE Motionale des sijets dikteral de lok		
BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 8 sur 13

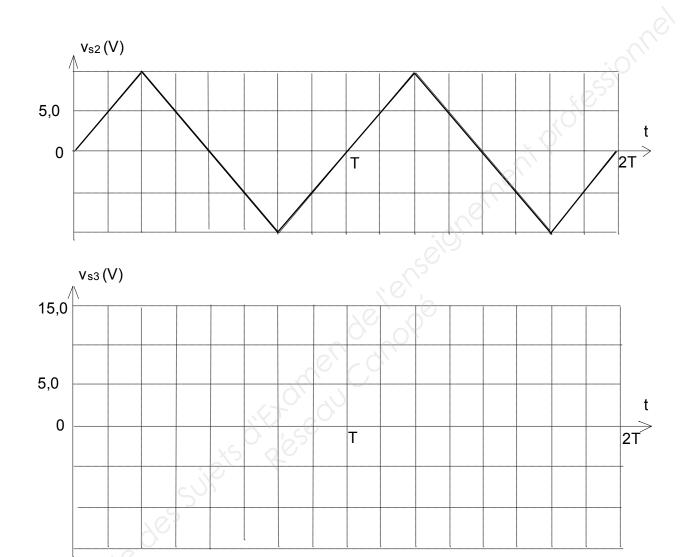

ANNEXE

PEUGEOT MOTOCYCLES / SERVICE QUALITÉ RELEVÉ DES PERFORMANCES DE L'ENSEMBLE MOTEUR VARIATEUR

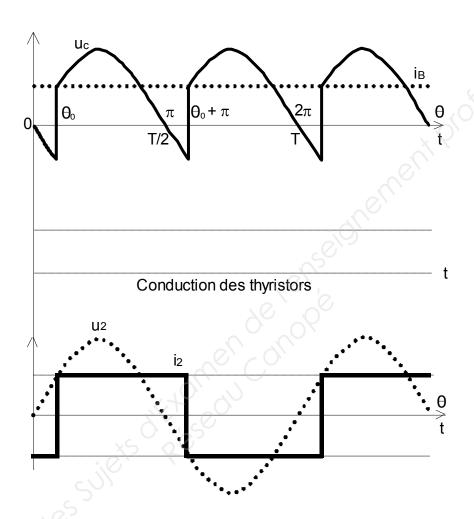
							. ()
	I _M	U _M	n	Tu	lex	Pu	Pu/Pabs totale
	А	V	tr.min ⁻¹	Nm	А	W	%
	80,0	17,4	4370	2,45	7,71	1120	78,3
	120	16,9	3980	3,84	8,29	1600	77,2
	200	15,9	3240	7,13	10,7	2420	74,4
	260	15,1	2610	10,5	13,8	2870	70,9
	300	14,6	2140	14,0	19,2	3140	68,0
Base Mationale des suiets of Res							


BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 9 sur 13

DOCUMENT RÉPONSE N°1 À rendre avec votre copie


BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 10 sur 13

DOCUMENT RÉPONSE N°2 À rendre avec votre copie


BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 11 sur 13

DOCUMENT RÉPONSE N°3 À rendre avec votre copie

BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 12 sur 13

DOCUMENT RÉPONSE N°4 À rendre avec votre copie

BTS ATI Unité U32 : Sciences Physiques	Durée : 2 h	Session 2015
CODE SUJET : 15-ATPHYME1	Coefficient : 2	Page 13 sur 13